Click here to close now.

Welcome!

Eclipse Authors: XebiaLabs Blog, Ken Fogel, Sematext Blog, Marcin Warpechowski, Trevor Parsons

Related Topics: Java, XML, Microservices Journal, Eclipse, AJAX & REA, Apache

Java: Article

The Disruptor Framework: A Concurrency Framework for Java

Rediscovering the Producer-Consumer Model with the Disruptor

Let's start with the basic question: What is the disruptor? The disruptor is a concurrency framework for Java that allows data sharing between threads. The age old way of coding a producer-consumer model is to use a queue as the buffer area between the producer and the consumer, where the producer adds data objects to the queue, which are in turn processed by the consumer. However, such a model does not work well at the hardware level and ends up being highly inefficient. The disruptor in its simplest form replaces the queue with a data structure known as the ‘ring buffer'. Which brings us to the next question, what is the ring buffer? The ring buffer is an array of fixed length (which must be a power of 2), it's circular and wraps. This data structure is at the core of what makes the disruptor super fast.

Let's explore a simple everyday scenario in enterprise architectures. A producer (let's call it the publisher) creates data and stores it in the queue. Two immediate consumers (let's call them fooHandler and barHandler) consume the data and make updates to it. Once these 2 processors are done with a piece of data, it is then passed on to a third consumer (let's call it fooBarHandler) for further processing. In a concurrent processing system using legacy techniques, coding this architecture would involve a crisscross of queues and numerous concurrency challenges, such as dealing with locks, CAS, write contention, etc. The disruptor on the other hand immensely simplifies such a scenario by providing a simple API for creating the producer, consumers and ring buffer, which in turn relieve the developer of all concerns surrounding handling concurrency and doing so in an efficient manner. We shall now explore how the disruptor works its magic and provides a reliable messaging framework.

Writing to the ring buffer

Looking at the figure above, we find ourselves in the middle of the action. The ring buffer is an array of length 4 and is populated with data items - 4,5,6 and 7, which in the case of the disruptor are known as events. The square above the ring buffer containing the number 7 is the current sequence number, which denotes the highest populated event in the ring buffer. The ring buffer keeps track of this sequence number and increments it as and when new events are published to it. The fooHandler, barHandler and fooBarHandler are the consumers, which in disruptor terminology are called ‘event processors'. Each of these also has a square containing a sequence number, which in the case of the event processors denotes the highest event that they have consumed/processed so far. Thus its apparent that each entity (except the publisher) tracks its own sequence number and thus does not need to rely on a third party to figure out which is the next event its after.

The publisher asks the ring buffer for the next sequence number. The ring buffer is currently at 7, so the next sequence number would be 8. However, this would also entail overwriting the event with sequence number 4 (since there are only 4 slots in the array and the oldest event gets replaced with the newest one). The ring buffer first checks the most downstream consumer (fooBarHandler) to determine whether it is done processing the event with sequence number 4. In this case, it has, so it returns the number 8 to the publisher. In case fooBarHandler was stuck at a sequence number lower than 4, the ring buffer would have waited for it to finish processing the 4th event before returning the next sequence number to the publisher. This sequence number helps the publisher identify the next available slot in the ring buffer by performing a simple mod operation. indexOfNextAvailableSlot = highestSeqNo%longthOfRingBuffer, which in this case is 0 (8%4). The publisher then claims the next slot in the ring buffer (via a customizable strategy depending on whether there is a single or multiple publishers), which is currently occupied by event 4, and publishes event 8 to it.

Reading from the ring buffer by immediate consumers

The figure above shows the state of operations after the publisher has published event 8 to the ring buffer. The ring buffer's sequence number has been updated to 8 and now contains events 5,6,7 and 8. We see that foohandler, which has processed events upto 7, has been waiting (using a customizable strategy) for the 8th event to be published. Unlike the publisher though, it does not directly communicate with the ring buffer, but uses an entity known as the ‘sequence barrier' to do so on its behalf. The sequence barrier let's fooHandler know that the highest sequence number available in the ring buffer is now 8. FooHandler may now get this event and process it.

Similarly, barHandler checks the sequence barrier to determine whether there are any more events it can process. However, rather than just telling barHandler that the next (6th) event is up for grabs, the sequence barrier returns the highest sequence number present in the ring buffer to barHandler too. This way, barHandler can grab events 6,7,8 and process them in a batch before it has to enquire about further events being published. This saves time and reduces load.

Another important thing to note here is that in the case of multiple event processors, any given field in the event object must only be written to by any one event processor. Doing so prevents write contention, and thus removes the need for locks or CAS.

Reading from the ring buffer by downstream consumers

A few moments after the set of immediate consumers grab the next set of data, the state of affairs looks like the figure above. fooHandler is done processing all 8 available events (and has accordingly updated its sequence number to 8), whereas barHandler, being the slow coach that it is, has only processed events upto number 6 (and thus has updated sequence number to 6). We now see that fooBarHandler, which was done processing events upto number 5 at the start of our examination, is still waiting for an event higher than that to process. Why did its sequence barrier not inform it once event 8 was published to the ring buffer? Well, that is because downstream consumers don't automatically get notified of the highest sequence number present in the ring buffer. Their sequence barriers on the other hand determine the next sequence number they can process by calculating the minimum sequence number that the set of event processors directly before them have processed. This helps ensure that the downstream consumers only act on an event once its processing has been completed by the entire set of upstream consumers. The sequence barrier examines the sequence number on fooHandler (which is 8) and the sequence number on barHandler (which is 6) and decides that event 6 is the highest event that fooBarHandler can process. It returns this info to fooBarHandler, which then grabs event 6 and processes it. It must be noted that even in the case of the downstream consumers, they grab the events directly from the ring buffer and not from the consumers before them.

Well, that is about all you would need to know about the working of the disruptor framework to get started. But while this is all well and good in theory, the question still remains, how would one code the above architecture using the disruptor library? The answer to that question lies below.

Coding the disruptor

public final class FooBarEvent {
private double foo=0;
private double bar=0;
public double getFoo(){
return foo;
}
public double getBar() {
return bar;
}
public void setFoo(final double foo) {
this.foo = foo;
}
public void setBar(final double bar) {
this.bar = bar;
}
public final static EventFactory<FooBarEvent> EVENT_FACTORY
= new EventFactory<FooBarEvent>() {
public FooBarEvent newInstance() {
return new FooBarEvent();
}
};
}

The class FooBarEvent, as the name suggests, acts as the event object which is published by the publisher to the ring buffer and consumed by the eventProcessors - fooHandler, barHandler and fooBarHandler. It contains two fields ‘foo' and ‘bar' of type double, along with their corresponding setters/getters. It also contains an entity ‘EVENT_FACTORY' of type EventFactory, which is used to create an instance of this event.

public class FooBarDisruptor {           
public static final int RING_SIZE=4;
public static final ExecutorService EXECUTOR
=Executors.newCachedThreadPool();

final EventTranslator<FooBarEvent> eventTranslator
=new EventTranslator<FooBarEvent>() {
public void translateTo(FooBarEvent event,
long sequence) {
double foo=event.getFoo();
double bar=event.getBar();
system.out.println("foo="+foo
+", bar="+bar
+" (sequence="+sequence+")");
}
};

final EventHandler<FooBarEvent> fooHandler
= new EventHandler<FooBarEvent>() {
public void onEvent(final FooBarEvent event,
final long sequence,
final boolean endOfBatch)
throws Exception {
double foo=Math.random();
event.setFoo(foo);
System.out.println("setting foo to "+foo
+" (sequence="+sequence+")");
}
};

final EventHandler<FooBarEvent> barHandler
= new EventHandler<FooBarEvent>() {
public void onEvent(final FooBarEvent event,
final long sequence,
final boolean endOfBatch)
throws Exception {
double bar=Math.random();
event.setBar(bar);
System.out.println("setting bar to "+bar
+" (sequence="+sequence+")");
}
};

final EventHandler<FooBarEvent> fooBarHandler
= new EventHandler<FooBarEvent>() {
public void onEvent(final FooBarEvent event,
final long sequence,
final boolean endOfBatch)
throws Exception {
double foo=event.getFoo();
double bar=event.getBar();
System.out.println("foo="+foo
+", bar="+bar
+" (sequence="+sequence+")");
}
};

public Disruptor setup() {
Disruptor<FooBarEvent> disruptor =
new Disruptor<FooBarEvent>(FooBarEvent.EVENT_FACTORY,
EXECUTOR,
new SingleThreadedClaimStrategy(RING_SIZE),
new SleepingWaitStrategy());
disruptor.handleEventsWith(fooHandler, barHandler).then(fooBarHandler);
RingBuffer<FooBarEvent> ringBuffer = disruptor.start();             
return disruptor;
}

public void publish(Disruptor<FooBarEvent> disruptor) {
for(int i=0;i<1000;i++) {
disruptor.publishEvent(eventTranslator);
}
}

public static void main(String[] args) {
FooBarDisruptor fooBarDisruptor=new FooBarDisruptor();
Disruptor disruptor=fooBarDisruptor.setup();
fooBarDisruptor.publish(disruptor);
}
}

The class FooBarDisruptor is where all the action happens. The ‘eventTranslator' is an entity which aids the publisher in publishing events to the ring buffer. It implements a method ‘translateTo' which gets invoked when the publisher is granted permission to publish the next event. fooHandler, barHandler and fooBarHandler are the event processors, and are objects of type ‘EventHandler'. Each of them implements a method ‘onEvent' which gets invoked once the event processor is granted access to a new event. The method ‘setup' is responsible for creating the disruptor, assigning the corresponding event handlers, and setting the dependency rules amongst them. The method ‘publish' is responsible for publishing a thousand events of the type ‘FooBarEvent' to the ring buffer.

In order to get the above code to work, you must download the disruptor jar file from http://code.google.com/p/disruptor/downloads/list and include the same in your classpath.

Conclusion
The disruptor is currently in use in the ultra efficient LMAX architecture, where it has proven to be a reliable model for inter thread communication and data sharing, reducing the end to end latency to a fraction of what queue based architectures provided. It does so using a variety of techniques, including replacing the array blocking queue with a ring buffer, getting rid of all locks, write contention and CAS operations (except in the scenario where one has multiple publishers), having each entity track its own progress by way of a sequence number, etc. Adopting this framework can greatly boost a developer's productivity in terms of coding a producer-consumer pattern, while at the same time aid in creating an end product far superior in terms of both design and performance to the legacy queue based architectures.

More Stories By Sanat Vij

Sanat Vij is a professional software engineer currently working at CenturyLink. He has vast experience in developing high availability applications, configuring application servers, JVM profiling and memory management. He specializes in performance tuning of applications, reducing response times, and increasing stability.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Chuck Piluso will present a study of cloud adoption trends and the power and flexibility of IBM Power and Pureflex cloud solutions. Speaker Bio: Prior to Data Storage Corporation (DSC), Mr. Piluso founded North American Telecommunication Corporation, a facilities-based Competitive Local Exchange Carrier licensed by the Public Service Commission in 10 states, serving as the company's chairman and president from 1997 to 2000. Between 1990 and 1997, Mr. Piluso served as chairman & founder of International Telecommunications Corporation, a facilities-based international carrier licensed by t...
There are lots of challenges in IoT around secure, scalable and business friendly infrastructure for enterprises. For large corporations, IoT implementations are one of the top priorities of the decade. All industries are seeing a competitive need to sustain by investing in IoT initiatives. The value addition comes from improved customer service, innovative product and additional revenue streams. The data from these IP-connected devices can be leveraged for a variety of business applications as well as responsive action controls. The various architectural building blocks of an IoT ...
While not quite mainstream yet, WebRTC is starting to gain ground with Carriers, Enterprises and Independent Software Vendors (ISV’s) alike. WebRTC makes it easy for developers to add audio and video communications into their applications by using Web browsers as their platform. But like any market, every customer engagement has unique requirements, as well as constraints. And of course, one size does not fit all. In her session at WebRTC Summit, Dr. Natasha Tamaskar, Vice President, Head of Cloud and Mobile Strategy at GENBAND, will explore what is needed to take a real time communications ...
The IoT Bootcamp is coming to Cloud Expo | @ThingsExpo on June 9-10 at the Javits Center in New York. Instructor. Registration is now available at http://iotbootcamp.sys-con.com/ Instructor Janakiram MSV previously taught the famously successful Multi-Cloud Bootcamp at Cloud Expo | @ThingsExpo in November in Santa Clara. Now he is expanding the focus to Janakiram is the founder and CTO of Get Cloud Ready Consulting, a niche Cloud Migration and Cloud Operations firm that recently got acquired by Aditi Technologies. He is a Microsoft Regional Director for Hyderabad, India, and one of the f...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
In 2015, 4.9 billion connected "things" will be in use. By 2020, Gartner forecasts this amount to be 25 billion, a 410 percent increase in just five years. How will businesses handle this rapid growth of data? Hadoop will continue to improve its technology to meet business demands, by enabling businesses to access/analyze data in real time, when and where they need it. Cloudera's Chief Technologist, Eli Collins, will discuss how Big Data is keeping up with today's data demands and how in the future, data and analytics will be pervasive, embedded into every workflow, application and infra...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, will provide some practical insights on what, how and why when implementing "software-defined" in the datacenter.
How is unified communications transforming the way businesses operate? In his session at WebRTC Summit, Arvind Rangarajan, Director of Product Marketing at BroadSoft, will discuss how to extend unified communications experience outside the enterprise through WebRTC. He will also review use cases across different industry verticals. Arvind Rangarajan is Director, Product Marketing at BroadSoft. He has over 19 years of experience in the telecommunications industry in various roles such as Software Development, Product Management and Product Marketing, applied across Wireless, Unified Communic...
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY., and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides private all-in-one social intranets allowing workers to securely collaborate from anywhere in the world and from any device. Social, mobile, and easy to use. MangoApps has been named a "Market Leader" by Ovum Research and a "Cool Vendor" by Gartner...
SYS-CON Media announced today that @ThingsExpo Blog launched with 7,788 original stories. @ThingsExpo Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @ThingsExpo Blog can be bookmarked. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago.
The world's leading Cloud event, Cloud Expo has launched Microservices Journal on the SYS-CON.com portal, featuring over 19,000 original articles, news stories, features, and blog entries. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. Microservices Journal offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Follow new article posts on Twitter at @MicroservicesE
SYS-CON Events announced today that robomq.io will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. robomq.io is an interoperable and composable platform that connects any device to any application. It helps systems integrators and the solution providers build new and innovative products and service for industries requiring monitoring or intelligence from devices and sensors.
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
Wearable technology was dominant at this year’s International Consumer Electronics Show (CES) , and MWC was no exception to this trend. New versions of favorites, such as the Samsung Gear (three new products were released: the Gear 2, the Gear 2 Neo and the Gear Fit), shared the limelight with new wearables like Pebble Time Steel (the new premium version of the company’s previously released smartwatch) and the LG Watch Urbane. The most dramatic difference at MWC was an emphasis on presenting wearables as fashion accessories and moving away from the original clunky technology associated with t...
SYS-CON Events announced today that Litmus Automation will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Litmus Automation’s vision is to provide a solution for companies that are in a rush to embrace the disruptive Internet of Things technology and leverage it for real business challenges. Litmus Automation simplifies the complexity of connected devices applications with Loop, a secure and scalable cloud platform.
So I guess we’ve officially entered a new era of lean and mean. I say this with the announcement of Ubuntu Snappy Core, “designed for lightweight cloud container hosts running Docker and for smart devices,” according to Canonical. “Snappy Ubuntu Core is the smallest Ubuntu available, designed for security and efficiency in devices or on the cloud.” This first version of Snappy Ubuntu Core features secure app containment and Docker 1.6 (1.5 in main release), is available on public clouds, and for ARM and x86 devices on several IoT boards. It’s a Trend! This announcement comes just as...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this case) takes into account the number and quality of contextual references that a user receives.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? Join this panel of experts as they peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you’ll have no problem filling in your buzzword bingo cards.