Welcome!

Eclipse Authors: Pat Romanski, Elizabeth White, Liz McMillan, David H Deans, JP Morgenthal

Blog Feed Post

The Internet of (Secure) Things – Embedding Security in the IoT

By

We’re seeing a glimmer of the future – the Internet of Things (IoT) – where anything and everything is or contains a sensor that can communicate over the network/Internet. The underlying technology enabling IoT is Machine-to-Machine (M2M) communications. Your running shoe tracks your workouts, sending the data to a mobile app. Your wristband tracks your daily activities, including sleep patterns. Your smartphone controls your television. Your tablet displays recorded videos from your home DVR, anywhere in the world. Your refrigerator tracks your food consumption and contacts a nearby grocery store to restock (someday delivered by drones!) Your car self-tunes and in the future may self-drive and be aware of your schedule (so will self-start and adjust the environment when it’s time to go to work). These are examples of consumer-oriented sensors and devices, but that has occurred in parallel with business, professional, infrastructure, government and military applications. Here are some examples…

Healthcare: Think of medical devices and how they’ve progressed – pin pricks for testing blood sugar to diabetes pumps to contact lenses that can monitor your blood sugar. Pacemakers can report statistics on your heart to doctors and hospitals.

Homes/Offices: Companies and utilities are building sensors into major appliances and HVAC systems. You can opt-in to smart metering so that a utility can load balance energy distribution. That capability is starting to reach into the home, with NEST thermostats and smoke detectors for example. Security alarm systems have communicated with operations centers and police for a long time, but now allow monitoring and control from your smartphone. These smart home technologies are also being applied to smart office buildings. Sensors throughout a building monitor power demand, air temperature and moisture, light levels and external factors (e.g. weather reports). That data is integrated with the building control system and room schedules to optimize energy consumption.

Transportation: For automotive vehicles, there are speed and red-light cameras, EZ Pass toll payments, bridge stress sensors, and traffic management systems outside the vehicle. Inside, there are diagnostic monitors, heads-up displays, adaptive cruise control, and integration with smartphone or in-vehicle GPS/mapping systems. Similar sensor systems exist for rail, sea and air transportation.

Agriculture: GPS-directed combines and sensors on everything from sprinkler/irrigation systems to soil/fertilizer quality are connected via a mesh network to optimize production and quality (thanks Ray Van Houtte for your graduate work in the 1970’s!)

Military: Sensor systems are being used to improve operations from logistics to the battlespace. By tracking the details of every item, the supply chain can be dynamic and more easily optimized. Sensors on drones and robots – air, land and sea – communicate to human operators, analysts and soldiers in the field to improve situational awareness and tactics. There’s even an Android app that leverages M2M communication to a scope to enable a sniper rifle to hit the target every time, regardless of the shooter’s expertise.

Last year, there were over 10 billion connected devices, and estimates predict this number to climb to anywhere from 30 to 50 billion by 2020. In terms of sensors, HP Labs estimates that we’ll hit 1 trillion before too long. To leverage the data and information across a number of these areas, HP Labs is working on a project called CeNSE (Central Nervous System for the Earth)

CeNSE intends to deploy billions of nanoscale sensors that detect and communicate information across all five human senses. The goal is to better understand our world in order to improve resource management and predict dangers to safety and security in the physical world.

hpinternetofthings

With these burgeoning capabilities, there needs to be some focus on cyber security. In my previous blogs, I wrote about continuous monitoring. In today’s current environments, attempts to continuously monitor enterprise security are challenged to track their current assets, which for large organizations number in the hundreds of thousands. The IoT will multiply those assets by a million or more. Today those assets are built on a variety of platforms and operating systems; the software is rarely patched and their communications are not secured. We’ve already seen examples of exploits of these systems – automobile telematics, pacemakers, smart TVs, and more. Science fiction depicts the worst of these scenarios in movies like “Terminator” or “The Matrix”, with machines taking over the world. In the latest of these, Ray Kurzweil’s idea of the singularity moves to the dark side, with a human intelligence taking control of the IoT in “Transcendence

Things aren’t necessarily so dire. The need to embed security in the IoT, from sensors to mobile apps to back-end infrastructure, is recognized and there are a number of efforts working to address the issue.

In private industry, there are companies using their expertise in cybersecurity to provide solutions in this space – QNX, acquired by Blackberry, and Mocana. QNX is a mature Unix operating system that over the years has built the most secure real-time operating system (RTOS) for embedded systems, Neutrino. It’s being used in automobile systems, home appliances, and to secure M2M communications.

Mocana is working on a new type of product code called AtoM (App-to-Machine) that will allow different users to manage and control devices securely, depending on their authority. In addition, they have built a Device Security Framework that provides end-to-end security for any device, based on US Government standards and regulations

On the open source side, there is an effort to build common communication platforms and interfaces for the IoT called AllJoyn that simplifies device information and configuration, onboarding, notification, control, and audio streaming.

Similarly, the AllSeen Alliance expands AllJoyn’s framework to multiple manufacturers and communication fabrics.

By enabling the integration of the variety of devices to communicate and connect, these initiatives will provide a common framework to secure and monitor the IoT. It’s something we have to build in to the IoT ecosystem now. If we wait, we’ll be playing catch-up, just like we are in Internet security – but at a much larger scale. Of course, with billions and trillions of devices and sensors, the accumulation of this information leads to a discussion of big data and big security data, which I will address next time.

 

This post first appeared on George Romas’ HP Blog.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
JETRO showcased Japan Digital Transformation Pavilion at SYS-CON's 21st International Cloud Expo® at the Santa Clara Convention Center in Santa Clara, CA. The Japan External Trade Organization (JETRO) is a non-profit organization that provides business support services to companies expanding to Japan. With the support of JETRO's dedicated staff, clients can incorporate their business; receive visa, immigration, and HR support; find dedicated office space; identify local government subsidies; get...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...