Welcome!

Eclipse Authors: Carmen Gonzalez, Roger Strukhoff, Lori MacVittie, Kevin Jackson, Mark R. Hinkle

Blog Feed Post

Diving into H2O

by Joseph Rickert One of the remarkable features of the R language is its adaptability. Motivated by R’s popularity and helped by R’s expressive power and transparency developers working on other platforms display what looks like inexhaustible creativity in providing seamless interfaces to software that complements R’s strengths. The H2O R package that connects to 0xdata’s H2O software (Apache 2.0 License) is an example of this kind of creativity. According to the 0xdata website, H2O is “The Open Source In-Memory, Prediction Engine for Big Data Science”. Indeed, H2O offers an impressive array of machine learning algorithms. The H2O R package provides functions for building GLM, GBM, Kmeans, Naive Bayes, Principal Components Analysis, Principal Components Regression, Random Forests and Deep Learning (multi-layer neural net models). Examples with timing information of running all of these models on fairly large data sets are available on the 0xdata website. Execution speeds are very impressive. In this post, I thought I would start a little slower and look at H2O from an R point of View. H2O is a Java Virtual Machine that is optimized for doing “in memory” processing of distributed, parallel machine learning algorithms on clusters. A “cluster” is a software construct that can be can be fired up on your laptop, on a server, or across the multiple nodes of a cluster of real machines, including computers that form a Hadoop cluster. According to the documentation a cluster’s “memory capacity is the sum across all H2O nodes in the cluster”. So, as I understand it, if you were to build a 16 node cluster of machines each having 64GB of DRAM, and you installed H2O everything then you could run the H2O machine learning algorithms using a terabyte of memory. Underneath the covers, the H2O JVM sits on an in-memory, non-persistent key-value (KV) store that uses a distributed JAVA memory model. The KV store holds state information, all results and the big data itself. H2O keeps the data in a heap. When the heap gets full, i.e. when you are working with more data than physical DRAM, H20 swaps to disk. (See Cliff Click’s blog for the details.) The main point here is that the data is not in R. R only has a pointer to the data, an S4 object containing the IP address, port and key name for the data sitting in H2O. The R H2O package communicates with the H2O JVM over a REST API. R sends RCurl commands and H2O sends back JSON responses. Data ingestion, however, does not happen via the REST API. Rather, an R user calls a function that causes the data to be directly parsed into the H2O KV store. The H2O R package provides several functions for doing this Including: h20.importFile() which imports and parses files from a local directory, h20.importURL() which imports and pareses files from a website, and h2o.importHDFS() which imports and parses HDFS files sitting on a Hadoop cluster. So much for the background: let’s get started with H2O. The first thing you need to do is to get Java running on your machine. If you don’t already have Java the default download ought to be just fine. Then fetch and install the H2O R package. Note that the h2o.jar executable is currently shipped with the h2o R package. The following code from the 0xdata website ran just fine from RStudio on my PC: # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }   # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://s3.amazonaws.com/h2o-release/h2o/rel-kahan/5/R", getOption("repos"))))   library(h2o) localH2O = h2o.init()   # Finally, let's run a demo to see H2O at work. demo(h2o.glm) Created by Pretty R at inside-R.org Note that the function h20.init() uses the defaults to start up R on your local machine. Users can also provide parameters to specify an IP address and port number in order to connect to a remote instance of H20 running on a cluster. h2o.init(Xmx="10g") will start up the H2O KV store with 10GB of RAM. demo(h2o,glm) runs the glm demo to let you know that everything is working just fine. I will save examining the model for another time. Instead let's look at some other H2O functionality. The first thing to get straight with H2O is to be clear about when you are working in R and when you are working in the H2O JVM. The H2O R package implements several R functions that are wrappers to H2O native functions. "H2O supports an R-like language" (See a note on R) but sometimes things behave differently than an R programmer might expect. For example, the R code: y <- apply(iris[,1:4],2,sum)y produces the following result: sepal.length sepal.width petal.length petal.width 876.5    458.6 563.7  179.9 now, let's see how things work in h2o, code loads h2o package, starts a local instance of uploads iris data set into from r package and produces very r-like summary. library(h2o) # load library localh2o =h2o.init() initial locl instance # upload file instance iris.hex >

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.