Eclipse Authors: Pat Romanski, Elizabeth White, Liz McMillan, David H Deans, JP Morgenthal

Blog Feed Post

Starting at the Basics: What is Hadoop and what problems does it solve?



With this post I start with the basics on Hadoop, including its history.

The story starts with the early days of Google. Engineers needed to design new ways to store and process and retrieve data that would scale to very large sizes. The published two papers on their design in 2003, and the highly regarded community-focused Doug Cutting produced an open source version of the software called Hadoop.

Along with that open source project came many other related open source capabilities, and soon an entire big data framework was created. New methods of storing, processing and retrieving data were now available, free, from the Apache Software Foundation. And innovation continued as a firm called Cloudera stood up to continue to accelerate innovation into the open source project.

Hadoop is a single data platform infrastructure that is more simplified, efficient, and runs on affordable commodity hardware.

Hadoop is designed to handle the three V’s of Big Data: volume, variety, velocity. First lets look at volume, Hadoop is a distributed architecture that scales cost effectively. In other words, Hadoop was designed to scale out, and it is much more cost effective to grow the system. As you need more storage or computing capacity, all you need to do is add more nodes to the cluster. Second is variety, Hadoop allows you to store data in any format, be that structured or unstructured data. This means that you will not need to alter your data to fit any single schema before putting it into Hadoop. Next is velocity, with Hadoop you can load raw data into the system and then later define how you want to view it. Because of the flexibility of the system, you are able to avoid many network and processing bottlenecks associated with loading raw data. Since data is always changing, the flexibility of the system makes it much easier to integrate any changes.

Hadoop will allow you to process massive amounts of data very quickly. Hadoop is known as a distributing processing engine which leverages data locality. That means it was designed to execute transformations and processes where the data actually exists. Another benefit of value is from an analytics perspective, Hadoop allows you load raw data and then define the structure of the data at the time of query. This means that Hadoop is quick, flexible, and able to handle any type of analysis you want to conduct.

Organizations begin to utilize Hadoop when they need faster processing on large data sets, and often find they save the organization some money too. Large users of Hadoop include: Facebook, Amazon, Adobe, EBay, and LinkedIn. It is also in use throughout the financial sector and the US government. These organizations are a testament to what can be done at internet speed by utilizing big data to its fullest extent

To read more about Hadoop, click here.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...