Welcome!

Eclipse Authors: Sematext Blog, Marcin Warpechowski, Trevor Parsons, Michael Meiner, Carmen Gonzalez

Related Topics: Java, SOA & WOA, Adobe Flex, AJAX & REA, Apache

Java: Article

Why Averages Are Inadequate, and Percentiles Are Great

Averages are ineffective because they are too simplistic and one-dimensional

Anyone who ever monitored or analyzed an application uses or has used averages. They are simple to understand and calculate. We tend to ignore just how wrong the picture is that averages paint of the world. To emphasis the point let me give you a real-world example outside of the performance space that I read recently in a newspaper.

The article was explaining that the average salary in a certain region in Europe was 1900 Euro's (to be clear this would be quite good in that region!). However when looking closer they found out that the majority, namely 9 out of 10 people, only earned around 1000 Euros and one would earn 10.000 (I over simplified this of course, but you get the idea). If you do the math you will see that the average of this is indeed 1900, but we can all agree that this does not represent the "average" salary as we would use the word in day to day live. So now let's apply this thinking to application performance.

The Average Response Time
The average response time is by far the most commonly used metric in application performance management. We assume that this represents a "normal" transaction, however this would only be true if the response time is always the same (all transaction run at equal speed) or the response time distribution is roughly bell curved.

A Bell curve represents the "normal" distribution of response times in which the average and the median are the same. It rarely ever occurs in real applications

In a Bell Curve the average (mean) and median are the same. In other words observed performance would represent the majority (half or more than half) of the transactions.

In reality most applications have few very heavy outliers; a statistician would say that the curve has a long tail. A long tail does not imply many slow transactions, but few that are magnitudes slower than the norm.

This is a typical Response Time Distribution with few but heavy outliers - it has a long tail. The average here is dragged to the right by the long tail.

We recognize that the average no longer represents the bulk of the transactions but can be a lot higher than the median.

You can now argue that this is not a problem as long as the average doesn't look better than the median. I would disagree, but let's look at another real-world scenario experienced by many of our customers:

This is another typical Response Time Distribution. Here we have quite a few very fast transactions that drag the average to the left of the actual median

In this case a considerable percentage of transactions are very, very fast (10-20 percent), while the bulk of transactions are several times slower. The median would still tell us the true story, but the average all of a sudden looks a lot faster than most of our transactions actually are. This is very typical in search engines or when caches are involved - some transactions are very fast, but the bulk are normal. Another reason for this scenario are failed transactions, more specifically transactions that failed fast. Many real-world applications have a failure rate of 1-10 percent (due to user errors or validation errors). These failed transactions are often magnitudes faster than the real ones and consequently distorted an average.

Of course performance analysts are not stupid and regularly try to compensate with higher frequency charts (compensating by looking at smaller aggregates visually) and by taking in minimum and maximum observed response times. However we can often only do this if we know the application very well, those unfamiliar with the application might easily misinterpret the charts. Because of the depth and type of knowledge required for this, it's difficult to communicate your analysis to other people - think how many arguments between IT teams have been caused by this. And that's before we even begin to think about communicating with business stakeholders!

A better metric by far are percentiles, because they allow us to understand the distribution. But before we look at percentiles, let's take a look a key feature in every production monitoring solution: Automatic Baselining and Alerting.

Automatic Baselining and Alerting
In real-world environments, performance gets attention when it is poor and has a negative impact on the business and users. But how can we identify performance issues quickly to prevent negative effects? We cannot alert on every slow transaction, since there are always some. In addition, most operations teams have to maintain a large number of applications and are not familiar with all of them, so manually setting thresholds can be inaccurate, quite painful and time-consuming.

The industry has come up with a solution called Automatic Baselining. Baselining calculates out the "normal" performance and only alerts us when an application slows down or produces more errors than usual. Most approaches rely on averages and standard deviations.

Without going into statistical details, this approach again assumes that the response times are distributed over a bell curve:

The Standard Deviation represents 33% of all transactions with the mean as the middle. 2xStandard Deviation represents 66% and thus the majority, everything outside could be considered an outlier. However most real world scenarios are not bell curved...

Typically, transactions that are outside two times standard deviation are treated as slow and captured for analysis. An alert is raised if the average moves significantly. In a bell curve this would account for the slowest 16.5 percent (and you can of course adjust that); however; if the response time distribution does not represent a bell curve, it becomes inaccurate. We either end up with a lot of false positives (transactions that are a lot slower than the average but when looking at the curve lie within the norm) or we miss a lot of problems (false negatives). In addition if the curve is not a bell curve, then the average can differ a lot from the median; applying a standard deviation to such an average can lead to quite a different result than you would expect. To work around this problem these algorithms have many tunable variables and a lot of "hacks" for specific use cases.

Why I Love Percentiles
A percentile tells me which part of the curve I am looking at and how many transactions are represented by that metric. To visualize this look at the following chart:

This chart shows the 50th and 90th percentile along with the average of the same transaction. It shows that the average is influenced far mor heavily by the 90th, thus by outliers and not by the bulk of the transactions

The green line represents the average. As you can see it is very volatile. The other two lines represent the 50th and 90th percentile. As we can see the 50th percentile (or median) is rather stable but has a couple of jumps. These jumps represent real performance degradation for the majority (50%) of the transactions. The 90th percentile (this is the start of the "tail") is a lot more volatile, which means that the outliers slowness depends on data or user behavior. What's important here is that the average is heavily influenced (dragged) by the 90th percentile, the tail, rather than the bulk of the transactions.

If the 50th percentile (median) of a response time is 500ms that means that 50% of my transactions are either as fast or faster than 500ms. If the 90th percentile of the same transaction is at 1000ms it means that 90% are as fast or faster and only 10% are slower. The average in this case could either be lower than 500ms (on a heavy front curve), a lot higher (long tail) or somewhere in between. A percentile gives me a much better sense of my real world performance, because it shows me a slice of my response time curve.

For exactly that reason percentiles are perfect for automatic baselining. If the 50th percentile moves from 500ms to 600ms I know that 50% of my transactions suffered a 20% performance degradation. You need to react to that.

In many cases we see that the 75th or 90th percentile does not change at all in such a scenario. This means the slow transactions didn't get any slower, only the normal ones did. Depending on how long your tail is the average might not have moved at all in such a scenario.!

In other cases we see the 98th percentile degrading from 1s to 1.5 seconds while the 95th is stable at 900ms. This means that your application as a whole is stable, but a few outliers got worse, nothing to worry about immediately. Percentile-based alerts do not suffer from false positives, are a lot less volatile and don't miss any important performance degradations! Consequently a baselining approach that uses percentiles does not require a lot of tuning variables to work effectively.

The screenshot below shows the Median (50th Percentile) for a particular transaction jumping from about 50ms to about 500ms and triggering an alert as it is significantly above the calculated baseline (green line). The chart labeled "Slow Response Time" on the other hand shows the 90th percentile for the same transaction. These "outliers" also show an increase in response time but not significant enough to trigger an alert.

Here we see an automatic baselining dashboard with a violation at the 50th percentile. The violation is quite clear, at the same time the 90th percentile (right upper chart) does not violate. Because the outliers are so much slower than the bulk of the transaction an average would have been influenced by them and would not have have reacted quite as dramatically as the 50th percentile. We might have missed this clear violation!

How Can We Use Percentiles for Tuning?
Percentiles are also great for tuning, and giving your optimizations a particular goal. Let's say that something within my application is too slow in general and I need to make it faster. In this case I want to focus on bringing down the 90th percentile. This would ensure sure that the overall response time of the application goes down. In other cases I have unacceptably long outliers I want to focus on bringing down response time for transactions beyond the 98th or 99th percentile (only outliers). We see a lot of applications that have perfectly acceptable performance for the 90th percentile, with the 98th percentile being magnitudes worse.

In throughput oriented applications on the other hand I would want to make the majority of my transactions very fast, while accepting that an optimization makes a few outliers slower. I might therefore make sure that the 75th percentile goes down while trying to keep the 90th percentile stable or not getting a lot worse.

I could not make the same kind of observations with averages, minimum and maximum, but with percentiles they are very easy indeed.

Conclusion
Averages are ineffective because they are too simplistic and one-dimensional. Percentiles are a really great and easy way of understanding the real performance characteristics of your application. They also provide a great basis for automatic baselining, behavioral learning and optimizing your application with a proper focus. In short, percentiles are great!

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
rtalexander 11/21/12 12:58:00 AM EST

Hey, could you post a reference or two that covers the theory and/or practicalities of the approach you describe?

Thanks!

@ThingsExpo Stories
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the real benefits to focus on, how to understand the requirements of a successful solution, the flow of ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the technology industry and how do they see opportunities for other women in their area of expertise.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
“With easy-to-use SDKs for Atmel’s platforms, IoT developers can now reap the benefits of realtime communication, and bypass the security pitfalls and configuration complexities that put IoT deployments at risk,” said Todd Greene, founder & CEO of PubNub. PubNub will team with Atmel at CES 2015 to launch full SDK support for Atmel’s MCU, MPU, and Wireless SoC platforms. Atmel developers now have access to PubNub’s secure Publish/Subscribe messaging with guaranteed ¼ second latencies across PubNub’s 14 global points-of-presence. PubNub delivers secure communication through firewalls, proxy ser...