Welcome!

Eclipse Authors: Pat Romanski, Elizabeth White, Liz McMillan, David H Deans, JP Morgenthal

Related Topics: Microservices Expo, Industrial IoT

Microservices Expo: Article

The In-Memory Technologies Behind Business Intelligence Software

Understanding the in-memory technologies that are used in Business Intelligence software

If you follow trends in the business intelligence (BI) space, you'll notice that many analysts, independent bloggers and BI vendors talk about in-memory technology.

There are technical differences that separate one in-memory technology from another, some of which are listed on Boris Evelson's blog.

Some of the items on Boris' list are just as applicable to BI technologies that are not in-memory (‘Incremental updates', for example), but there is one item that merits much deeper discussion. Boris calls this characteristic ‘Memory Swapping' and describes it as, What the (BI) vendor's approach is for handling models that are larger than what fits into a single memory space.

Understanding Memory Swapping
The fundamental idea of in-memory BI technology is the ability to perform real-time calculations without having to perform slow disk operations during the execution of a query. For more details on this, visit my article describing how in-memory technology works.

Obviously, in order to perform calculations on data completely in memory, all the relevant data must reside in memory, i.e., in the computer's RAM. So the questions are: 1) how does the data get there? and 2) how long does it stay there?

These are probably the most important aspects of in-memory technology, as they have great implications on the BI solution as a whole.

Pure In-Memory Technology
Pure in-memory technologies are the class of in-memory technologies that load the entire data model into RAM before a single query can be executed by users. An example of a BI product which utilizes such a technology is QlikView.

QlikView's technology is described as "associative technology." That is a fancy way of saying that QlikView uses a simple tabular data model which is stored entirely in memory. For QlikView, much like any other pure in-memory technology, compression is very important. Compressing the data well makes it possible to hold more data inside a fixed amount of RAM

Pure in-memory technologies which do not compress the data they store in memory are usually quite useless for BI. They either handle amounts of data too small to extract interesting information from, or they break too often.

With or without compression, the fact remains that pure in-memory BI solutions become useless when RAM runs out for the entire data model, even if you're only looking to work with limited portions of it at any one time.

Just-In-Time In-Memory Technology
Just-In-Time In-Memory (or JIT In-Memory) technology only loads the portion of the data into RAM required for a particular query, on demand. An example of a BI product which utilizes this type of technology is SiSense.

Note: The term JIT is borrowed from Just-In-Time compilation, which is a method to improve the runtime performance of computer programs.

JIT in-memory technology involves a smart caching engine that loads selected data into RAM and releases it according to usage patterns.

This approach has obvious advantages:

  1. You have access to far more data than can fit in RAM at any one time
  2. It is easier to have a shared cache for multiple users
  3. It is easier to build solutions that are distributed across several machines

However, since JIT In-Memory loads data on demand, an obvious question arises: Won't the disk reads introduce unbearable performance issues?

The answer would be yes, if the data model used is tabular (as they are in RDBMSs such as SQL Server and Oracle, or pure in-memory technologies such as QlikView), but scalable JIT In-Memory solutions rely on a columnar database instead of a tabular database.

This fundamental ability of columnar databases to access only particular fields, or parts of fields, is what makes JIT In-Memory so powerful. In fact, the impact of columnar database technology on in-memory technology is so great, that many confuse the two.

The combination of JIT In-Memory technology and a columnar database structure delivers the performance of pure in-memory BI technology with the scalability of disk-based models, and is thus an ideal technological basis for large-scale and/or rapidly-growing BI data stores.


The ElastiCube Chronicles - Business Intelligence Blog

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...